SILABUS SMP
Satuan Pendidikan : SMP
Mata Pelajaran : Matematika
Kompetensi Inti
1. Menghargai dan menghayati ajaran agama yang dianutnya.
2. Menunjukan perilaku jujur, disiplin, tanggung jawab, peduli (toleransi, gotong royong, santun, percaya diri, dalam berinteraksi, secara efektif dengan lingkungan sosial dan alam menjangkau pergaulan dan keberadaannya.
3. Memahami dan menerapkan (factual, konseptual, dan procedural) berdasarkan rasa ingin tahunya trntang ilmu pengetahuan, teknologi, seni budaya terkait fenomena dan kejadian tampak mata.
4. Mengolah, menyaji, dan menalar dalam ranah konkret (menggunakan, mengurai, merangkai, memodifikasi, dan membuat) dan ranah abstrak ( menulis, membaaca, menghitung, menggambar, dan mengarang) sesuai dengan yang dipelajari di sekoalh dan sumber lainnya yang sama dalam sudut pandang/teori.
Kompetensi Dasar | Materi Pokok | Pembelajaran | Penilaian | Alokasi Waktu | Sumber Belajar |
3.6 Menjelaskan dan membuktikan teorema Pytagoras dan tripel Pytagoras. 4.6 Menyelesaikan masalah yang berkaitan dengan teorema Pytagoras dan tripel Pytagoras. | Teorema Pytagoras: · Mengenal teorema Pytagoras · Penggunaan teorema Pytagoras | Mengamati · Mengamati gambar, foto, video atau secara langsungperistiwa, kejadian, fenomena, konteks atau situasi yang berkaitan dengan teorema Pytagoras. Menanya · Guru memotivasi, mendorong kreativitas dalam bentuk bertanya, memberi gagasanyang menarik dan menantang untuk didalami misal: bagaimana Pytagoras menemukan rumusnya dan sebagainya. · Membahas dan diskusi mempertanyakan berbagai ekspresi alajabar dan khususnya persamaan linier dua variable, misal: apa kelebihan dan manfaat penggunaan teorema pytagoras dan pola bilangan, bagaimana mengubah masalah/Bahasa sehari-hari ke dalam teorema Pytagoras dan pola bilangan sebaliknya. Mengekplorasi · Menggambar atau melukis berbagai bentuk segitiga siku-siku dengan penggaris, busur, agtau jangka serta membahas, mendiskusikan dan menjelaskan unsur, jenis dan sifat segitiga siku-suku. · Melakukan percobaan mengukur sisi-sisi berbagai segitiga siku-siku atau melelui peragaan untuk menemukan dan menjelaskan teorema Pytagoras. · Mengidentifikasi teorema Pytagoras berdasarkian pola-pola bilangan. · Menjelaskan, mendeskripsikan strategi memprediksi pola bilangan kedalam diagram, table, gambar/ilusi yang lebih sederhana, jelas dan lengkap, dan mendiskusikan ciri, sifat dan karakteristik serta menemukan strategi uintuk membentuk pola bilangan yang memenuhi sifat tripel Pytagoras · Berlatih menemukan sisi-sisi suatu segitiga ataupun unsur lainnya yang berkaitan dengan teorema Pytagoras. · Menjelaskan atau mendeskripsikan masalah kedalam bahasa sendiri, diagram, table, gambar/ilustrasi yang lebih sederhana, jelas dan lengkap. · Membahas, mengidentifikasi, dan menentukan konsep derta mengorganisasi data dan memilih informasi yang relavan berkaitan dengan masalah penerapan teorema Pytagoras dengan merepresentasikan secara matematis melalui model atau melalui diagram. · Menyusun, membuat atau merumuskan model atau kalimat matematika yang tepat, lengkap dan cukup berdasarkan masalah penerapan teorema Pytagoras, serta syarat keberlakuan modelnya. · Menggunakan, memanfaatkan, dan memilih algoritma atau prosedur operasi serta memanipulasi matematika yang tepat dalam menyelesaiakan model dan masalah penerapan teorema Pytagoras. · Menentukan dan mefsirkan solusi atau penyelesaian masalah serta memberikan alasan kebenaran solusi berkaitan dengan penerapan teorema Pytagoras. · Menjelaskan atau mendeskripsikan masalah nyata kedalam bahasa sendiri, diagram, tabel, gambar/ilustrasi yang lebih sederhana, jelas dan lengkap. · Menjelaskan, mendeskripsikan dan mengklasifikasi objek-objek yang termasuk kedalam pola dari masalah nyata, serta menyajikannya kedalam berbagai bentuk representasi matematika. · Membahas, mengidentifikasi, dan menentukan konsep serta mengorganisasi data dan memilih infirmasi yang relavan, sertaq menemukan pola atau sifat dari gejala matematis dari masalah nyata untuk membuat generalisasi. · Meyusun membuat atau merumuskan model atau kalimaty matematika yang tepat, lengkap dan cukup berdasarkan masalah, serta syatar keberlakuan modelnya. · Menggunakan, memanfaatkan dan memilih algoritma atau peosedur operasi serta memanipulasi matematika yang tepat dalam menyelasaiakan model dari masalah. · Menentukan dan menafsirkan solusi atau penyelesaian masalah serta memberikan alasan kebenaran solusinya. Mengasosiasi · Menyelidiki, menganalisis dan membedakan menjelaskan melalui contoh kejadian, peristiwa, situasi atau fenomena alam dan aktifitas social sehari-hari yang merupakan penerapan teorema Pytagoras dan pola bilangan. · Menyelidiki dan menguji kebenaran, syarat keberlakuan teorema Pytagoras dan pola bilangan menggunakan contoh atau logika berpikir. · Menyelidiki, menganalisis dan menyimpulkan sifat teorema Pytagoras berdasarkan pola-pola bilangan. Mengkomunikasikan · Menyajiakn secara tertulis atau lisan hasil pembelajaran, apa yang telah dipelajari, ketrampilan atau materi yang masih perlu ditingkatkan, atau strategi atau konsep baru yang di temukan (menurut siswa) berdasarkan apa yang di pelajari pada tingkat kelas atau tingkat kelompok. · Memberikan tanggapan hasil presentasi meliputi tanya jawab untuk mengkonfirmasi, sanggahan dan alasan, memberikan tambahan informasi, atau melengkapi informasi, ataupun tanggapan lainnya. · Melakukan resume secara lengkap, komprehensif dan dibantu guru dari konsep yang dipahami, ketrampilan yang diperoleh maupun sikap lainnya. | Tugas · Tugas terstruktur: mengerjakan latihan soal-soal yang berkaitan dengan Teorema Pytagoras. · Tugas mandiri tidak terstruktur: mencatat dan mencari informasi sejarah teorema Pytagoras. Observasi Pengamatan selama kegiatan belajar mengajar (KBM) tentang: · Ketelitian · Rasa ingin tahu Portfolio Mengumpulkan bahan dan literatur berkaitan dengan teorema Pytagoras dan penerapannya dalam kehidupan sehari-hari kemudian disusun, didiskusikan dan direfleksikan Tes Tes tertulis: mengerjakan soal-soal berkaitan dengan teorema Pytagoras. | 15 JP | · Buku teks matematika Kemendikbud kelas VIII · Peristiwa sehari-hari dan lingkungan · Buku pengayaan yang berkaitan dengan teorema PYtagoras · Alat Peraga |
3.7 Menjelaskan sudut pusat, sudut keliling, panjang busur, dan luas juring lingkaran serta hubungannya. 3.8 Menjelaskan garis singgung persekutuan luar dan persekutuan dalam dua lingkaran dan cara melukisnya. 4.7 Menyelesaikan masalah yang berkaitan dengan garis singgung persekutuan luar dan persekutuan dalam dua lingkaran dan cara melukisnya 4.8 Menyelesaikan masalah yang berkaitan dengan garis singgung persekutuan luar dan persekutuan dalam dua lingkaran. | Lingkaran: · Keliling dan luas lingkaran · Sudut pusat dan sudut keliling · Hubungan sudut pusat, Panjang busur, luas juring dan luas tembereng. · Garis singgung persekutuan dua lingkaran | Mengamati · Mengamati gambar, foto, video atau secara langsungperistiwa, kejadian, fenomena, konteks atau situasi yang berkaitan dengan konsep lingkaran. Menanya · Guru memotivasi, mendorong kreativitas dalam bentuk bertanya, memberi gagasanyang menarik dan menantang untuk didalami misal: bagaimana konsep dan bentuk lingkaran digunakan manusia untuk membuat roda, mempermudah gerak benda dan sebagainya. · Membahas dan diskusi mempertanyakan berbagai ekspresi alajabar dan khususnya persamaan linier dua variable, misal: apa kelebihan dan manfaat benda bentuk lingkaran, bagaimana terampil melukis lingkaran dengan media yang tersedia, dan sebaginya. Mengekplorasi · Mendiskusikan, mendeskripsikan dan menjelaskan nilai estetika dan fungsi berbagai benda berbentuk lingkaran atau memiliki permukaan lingkaran. · Menggambar atau melukis lingkaran dengan jangka atau dengan koin serta membahas, mendiskusikan dan menjelaskan unsur-unsur lingkaran (titik pusat, lati busur, juring, busur, jari-jari, diameter, tembereng). · Melakukan percobaan mengukur diameter dan keliling berbagai lingkaran untuk menemukan dan menjelaskan nilai rasio atau perbandingan keliling dengan diameter dengan phi (π) sebagai nilai kira-kira 3,14. · Melakukan percobaan dengan memotong kertas berbentuk lingkaran kedalam juring-juring yang kecil serta digabung menjadi bangun mirip persegi Panjang dengan ukuran Panjang setengah kelilingnya dan lebar7 sebesar jari-jari untuk menemukan rumus luas lingkaran. · Berlatih menemukan jari-jari, diameter keliling, luas ataupun unsur lainnya yang berkaitan dengan masalah lingkaran. · Mendiskusikan, mendeskripsikan dan mejelaskan serta menggambar dan mengarsir daerah juring lingkaran dengan sudut pusat tertentu. · Melakukan percobaan mengukur berbagai sudut, Panjang busur, dan luas juring untuk menemukan dan menjelaskan bahwa besar sudut pusat, Panjang busur, dan luas juring adalah senilai/seharga/ sebanding/liniear. · Berlatih menentukan besar sudut pusat, Panjang busur, dan luas juring ataupun unsur lainnya yang berkaitan dengan masalah lingkaran. · Menjelaskan atau mendeskripsikan masalah kedalam bahasa sendiri, diagram, tabel, gambar/ilustrasi yang lebih sederhana, jelas dan lengkap. · Membahas, mengidentifikasi, dan menentukan konsep serta mengorganisasi data dan memilih informasi yang relavan berkaitan dengan maalah sudut pusat, busur dan juring dengan mempresentasikan secara matematis melalui model atau melalui diagram. · Menyusun, membuat, atau merumuskan model atau kalimat matematika yang tepat, lengkap dan cukup berdasarkan masalah sudut pusat, busur dan juring, serta syarat keberlakuan modelnya. · Menggunakan, memanfaatkan dan memilih algoritma atau prosedur operasi serta memanipulasi matematika yang tepat dalam menyelesaikan model dari maslah sudut pusat, Panjang busur dan luas juring. · Menentukan dan menafsirkan solusi atau penyelesaian masalah serta memberikan alasan kebenaran solusi berkaitan dengan sudut pusat, Panjang busur, dan luas juring. · Mendiskusikan, membahas, dan menentukan sudut pusat dan sudut keliling lingkaran. · Mendiskusikan, menjelaskan, dan menarik kesimpulan berdasarkan tahapan dan prosedur penyelesaian masalah sudut pusat, busur, dan juring. · Mendiskusikan, membahas, dan menghitung keliling dan lias lingkaran. · Mendiskusikan untuk menentukan dan melukis garis singgung pada satu titik pada dan di luar lingkaran. · Mendiskusikan untuk menentukan dan melukis Panjang garis singgung lingkaran dari satu titik di luar lingkaran. · Menentukan Panjang garis singgung persekutuan dalam dan luar lingkaran. · Melukis lingkaran dalam segitiga · Melukis lingkaran luar segitiga Mengasosiasi · Menyelidiki, menganalisis dan membedakan menjelaskan melalui contoh kejadian, peristiwa, situasi atau fenomena alam dan aktifitas social sehari-hari yang merupakan penerapan lingkaran atau lainnya. · Menganalisis dan menyimpulkqan rumus keliling dan luas lingkaran berdasarkan hasil pengamatan, percobaan. Mengkomunikasikan · Menyajiakn secara tertulis atau lisan hasil pembelajaran, apa yang telah dipelajari, ketrampilan atau materi yang masih perlu ditingkatkan, atau strategi atau konsep baru yang di temukan (menurut siswa) berdasarkan apa yang di pelajari pada tingkat kelas atau tingkat kelompok. · Memberikan tanggapan hasil presentasi meliputi tanya jawab untuk mengkonfirmasi, sanggahan dan alasan, memberikan tambahan informasi, atau melengkapi informasi, ataupun tanggapan lainnya. · Melakukan resume secara lengkap, komprehensif dan dibantu guru dari konsep yang dipahami, ketrampilan yang diperoleh maupun sikap lainnya. | Tugas · Tugas terstruktur: mengerjakan Latihan soal-soal yang berkaitan dengan lingkaran · Tugas mandiri tidak terstruktur: mencatat dan mencari informasi penggunaan lingkaran Observasi Pengamatan selama kegiatan belajar mengajar (KBM) tentang: · Ketelitian · Rasa ingin tahu · dll Portfolio Mengumpulkan bahan dan literatur berkaitan dengan lingkaran dan penerapannya dalam kehidupan sehari-hari kemudian disusun, didiskusikan dan direfleksikan Tes Tes tertulis: mengerjakan soal-soal berkaitan dengan lingkaran. | 25 JP | · Buku teks matematika kemendikbud kelas VIII · Peristiwa sehari-hari lingkungan · Buku pengayaan yang berkaitan dengan lingkaran · Alat peraga lingkaran |
3.9 Membedakan dan menentukan luas permukaan dan volume bangun ruang sisi datar (kubus, balok, prisma, dan limas). 4.9 Menyelesaikan masalah yang berkaitan dengan luas permukaan dan volume bangun ruang sisi datar (kubus, balok, prisma, dan limas). | Bangun Ruang Sisi Datar: · Kubus · Balok · Prisma · Limas · Luas permukaan dan volume bangun ruang gabungan · Hubungan antar diagonal bidang dan bidamg diagonal. | Mengamati · Mengamati gambar, foto, video atau secara langsungperistiwa, kejadian, fenomena, konteks atau situasi yang berkaitan dengan luas dan volume bangun ruang sisi datar (kubus, balok, prisma, dan limas). Menanya · Guru memotivasi, mendorong kreativitas dalam bentuk bertanya, memberi gagasanyang menarik dan menantang untuk didalami misal: bagaimana manusia menghitung, menemukan, menaksir berbagai luas dan volume berbagai benda di sekeliling kita melalui percobaan yang berbentuk kubus, balok, prisma, dan limas. · Membahas dan diskusi mempertanyakan berbagai aspek luas dan volume, misal: apa kelebihan dan manfaat pengetahuan dan penggunaan masalah luas dan volume pada bangun ruang sisi datar (kubus, balok, prisma, dan limas). · Guru memotivasi, mendorong kreativitas dalam bentuk bertanya, memberi gagasan yang menarik dan menantang untuk didalami misal: bagaimana penerapan luas dan volume intuk bangun ruang yang tidak beraturan. Mengeksplorasi · Mengidentifikasi, membahas dan menjelaskan tentang bangun ruang sisi datar (kubus, balok, prisma dan limas). · Membahas, membentuk atau Menyusun berbagai model kerangka serta jarring-jaring bangunruang sisi datar (kubus, balok, prisma dan limas). · Mengidentifikasi dan membahasa untur-unsur bangun ruang sisi datar (kubus, balok, prisma, dan limas) · Membahas, menjelaskan strategi dan melakukan percobaan untuk menemukan dan menghitung luas permukaan serta volume bangun ruang sisi datar (kubus, balok, prisma, dan limas). · Berlatih menentukan luas, volume atau unsur lainnya yang berkaitan dengan bangun ruang sisi datar (kubus, balok, prisma, dan limas) dan bangun datar tidak beraturan. · Membahas, menggambar atau membuat sketsa bangun ruang beraturan atau bangun geometri dasar yang memiliki kesamaan atau kemiripan ukuran dengan bangun ruang tidak beraturan. · Membahas, menjelaskan strategi menghitung luas dan volume bangun geometri dasar sebagai cara untuk menaksir luas dan volume bangun ruang tidak beraturan. · Berlatih menentukan luas, volume kubus, balok, prisma, dan limas ataupun unsur lainnya yang berkaitan dengan bangun ruang tidak beraturan bersisi lengkung ataupun tidak bersisi lengkung. Mengasosiasi · Menyelidiki, menganalisis dan menjelaskan melalui contoh kejadian, peristiwa, situasi atau fenomena alam dan aktivitas social sehari-hari yang merupakan luas dan volume bangun ruang sisi datar (kubus, balok, prisma, dan limas). · Menganalisis, merancang dan melakukan percobaan dan menyimpulkan konsep dan rumus luas dan volume bangun datar dan bangun ruang sederhana serta untuk menaksir bangun-bangun tidak beraturan melalui contoh kejadian, peristiwa, situasi atau fenomena alam dan aktivitas social sehari-hari. · Menyelidiki, menganalisis dan menyimpulkan unsur-unsur rumus luas dan volume bangun ruang sisi datar (kubus, balok, prisma, dan limas) serta perilaku hubungan fungsionalnya. Mengkomunikasikan · Menyajiakn secara tertulis atau lisan hasil pembelajaran, apa yang telah dipelajari, ketrampilan atau materi yang masih perlu ditingkatkan, atau strategi atau konsep baru yang di temukan (menurut siswa) berdasarkan apa yang di pelajari pada tingkat kelas atau tingkat kelompok. · Memberikan tanggapan hasil presentasi meliputi tanya jawab untuk mengkonfirmasi, sanggahan dan alasan, memberikan tambahan informasi, atau melengkapi informasi, ataupun tanggapan lainnya. · Melakukan resume secara lengkap, komprehensif dan dibantu guru dari konsep yang dipahami, ketrampilan yang diperoleh maupun sikap lainnya. | Tugas · Tugas terstruktur: mengerjakan latihan soal-soal yang berkaitan dengan bangun ruang sisi datar (kubus, balok, prisma, dan limas). · Tugas mandiri tidak terstruktur: mencatat dan mencari informasi seputar bangun ruang sisi datar (kubus, balok, prisma, dan limas) dan pengunaannya dalam kehidupan sehari-hari. Observasi Pengamatan selama kegiatan belajar mengajar (KBM) tentang: · Ketelitian · Rasa ingin tahu · Dll Portfolio Mengumpulkan bahan dan literatur berkaitan dengan bangun ruang sisi datar (kubus, balok, prisma, dan limas) dan penerapannya dalam kehidupan sehari-hari kemudian disusun, didiskusikan dan direfleksikan Tes Tes tertulis: mengerjakan soal-soal berkaitan dengan bangun ruang sisi datar (kubus, balok, prisma, dan limas). | 20 JP | · Buku teks matematika Kemendikbud kelas VIII · Peristiwa sehari-hari dan lingkungan · Buku pengayaan yang berkaitan dengan bangun ruang sisi datar (kubus, balok, prisma, dan limas) dan pengunaannya dalam kehidupan sehari-hari. · Alat peraga |
3.10Menganalisis data berdasarkan distribusi data, nilai rata-rata, median, modus, dan sebaran data untuk mengambil kesimpulan, mem buat keputusan, dan membuat prediksi. 4.10 Menyajikan dan menyelesaikan masalah yang berkaitan dengan distribusi data, nilai rata-rata, median, modus, dan sebaran data untuk mengambil kesimpulan, membuat keputusan dan membuat prediksi. | Statistika: · Menganalisis data dari distribusi data yang diterima. · Ukuran pemusatan data. · Ukuran penyebaran data. | Mengamati · Mengamati gambar/foto/tayangan/peristiwa, kejadian, fenomena, konteks atau situasi yang berkaitan dengan penggunaan data, contoh pengukuran tinggi badan, pengukuran berat badan, pencacahan jumlah penduduk, tabel, grafik batang, diagram lingkaran, dan grafik garis, seperti penggunaan hasil survey Lembaga tentang partai politik, dan sebagainya. Menanya · Guru dapat memotivasi siswa dengan bertanya: misal bagaimana cara mendapatkan data jumlah pertumbuhan penduduk tiap tahun? Mengapa pengolahan data sangat diperlukan dalam kehidupan sehari-hari. · Siswa termotivasi untuk mempertanyakan berbagai aspek statistik, misal: bagaimana kendala data untuk memprediksi suatu peristiwa, bagaimana menentukan peluang kejadian tertentu, dan sebagainya. Mengeksplorasi · Menjelaskan berbagai informasi dari suatu objek atau benda misal: warna, bentuk, asal, bahan, nama, dsb. · Membahas, memberi contoh, dan mendeskripsikan populasi sebagai sekumpulan data yang memilii karakteristik sama dan menjadi objek inferensi, penggabaran atau deskripsi dari populasi tersebut, misal: populasi siswa, hewan, perangkat atau perkakas benda. · Menjelaskan dan mendeskripsikan data sebagai informasi uyang dicatat dan di kumpulkan berupa hasil hitungan atau pengukuran dari suatu objek atau benda, misal: berat,ukuran, tinggi,, lebar, volume dan sebagainya. · Berdiskusi dan Menyusun lembar isian, formular atau kuisioner, serta melakukan pengumpulan suatu data dengan cara pengukuran, pengamatan, dan pencacahan untuk mendapatkan data dan informasi dari beberapa teman sekelas, misal: nama, usia, berat dan tinggi badan, tempat dan tanggal lahir, jumlah saudara, dan sebagainya. · Menyajikan hasil pengumpulan data kebentuk tabel biasa, tabel frekuensi, diagram batang, garis, dan lingkaran, grafik dengan menggunakan skala serta dilengkapi keterangan dan judul yang tepat. · Secara berkelompok melakukan demonstrasi dalam mengumpulkan dan mengklasifikasi data tunggal yang berasal dari kehidupan sehari-hari misalkan mengukur tinggi badan, menimbang berat badan, mencacah jumlah keluarga, mengukur Panjang daun, menghitung banyaknya kendaraan yang melintas di perempatan dalam janggi waktu tertentu dengan penuh tanggung jawab. · Menjelaskan dan mendeskripsiikan pengertian data tunggal, mengolah dan menyajiikannya dalam bentuk tabel atau diagram secara mandiri. · Mengolah, mengurutkan, mengklasifikasi dan menyajikan data berkelompok dan tidak berkelompok (tunggal) untuk menentukan deskripsi data seperti ukuran pemusatan (rata-rata, mediam, modus, kuartil), ukuran penyebaran data (range/jangkauan, simpangan kuartil, simpangan rata-rata, simpangan baku)ataupun mendeskripsikan tabel atau grafik agar lebih mudah dibaca dan dimaknai. · Mengolah, mengurutkan, mengklasifikasi dan menyajikan data berkelompok dan tidak berkelompok (tunggal) untuk melakukan inferensi seperti memprediksi nilai observasi masa depan berdasarkan perilaku data, menentukan hubungan antar data, atau menafsirkan dan mengambil keputusan berdasarkan analisis data. · Mencari informasi bagaimana menyajikan data dalam bentuk diagram dengan perangkat pengolah kata dan pengolah data dengan teliti. Kemudian, peserta didik membuat sembarang data dan menyajiaknya dalam bentuk diagram batang, garis atau lingkaran (simulasi prigram computer) Mengasosiasi · Mengidentifikasi, menganalisis dan menyimpulakan jenis hasil pengumpulan data dari berbagai objek, misal: data jenis kelamin, agama, warna kulit, dsb; data tahun, temperature,dsb: dan data pengukuran ukuran benda, tinggi dan sebgaianya. · Mengidentifikasi, menganalisis dan men yimpulkan perbedaan dan persamaan hasil penafsiran, deskripsi atau statistic dari dua kelokmpok data sejenis atau apabila objek pengumpulan data dipilih dengan kriteria tertentu. · Menganallisis dan memberi penjelasan alasan proses pembacaan data yang paling mudah, apakah dengan tabel, diagram, atau grafik. Mengkomunikasikan · Menyajikan secara tertulis dan lisan hasil pembelajaran atau apa yang telah dipelajari pada tinggkat kelas atau tingkat kelompok mulai dari apa yang telah dipahami, ketrampilan pengolahan data yang telah dikuasai, contoh begaimana cara melakukan pengolahan data dari hasil pengukuran, pencacahan, dan lain sebagainya. · Menyajiakn secara tertulis dan lisan hasil pembelajaran atau apa yang telah dipelajari pada tingkat kelas atau tingkat kelompok mulai dari apa yang telah dipahami, ketrampilan penyajihan data, dalam bentuk tabel, diagram dan grafik, contoh bagaimana cara melakukan penyajian data dari hasil pengukuran, pencacahan, dan lain sebagainya. · Memberikan tanggapan hasil presentasi meliputi tanya jawab untuk mengkonfirmasi, memberikan tambahan informasi, melengkapi informasi ataupun tanggapan lainnya. · Melakukan resume secara lengkap, komprehensif dan dibantu guru dari konsep yang dipahami, ketrampilan yang diperoleh, maupun sikap lainnya. | Tugas · Tugas terstruktur: mengerjakan latihan soal-soal yang berkaitan dengan distribusi data, nilai rata-rata, median, modus, dan sebaran data. · Tugas mandiri tidak terstruktur: melakukan pendataan kemudian menyajikan dan mengolahnya Observasi Pengamatan selama kegiatan belajar mengajar (KBM) tentang: · Ketelitian · Rasa ingin tahu · dll Portfolio Mengumpulkan bahan dan literatur berkaitan dengan penyajian, pengolahan data dan penerapannya dalam kehidupan sehari-hari kemudian disusun, didiskusikan dan direfleksikan. Tes Tes tertulis: mengerjakan soal-soal berkaitan dengan penyajian dan pengolahan data. | 15 JP | · Buku teks matematika kelas VIII kemendikbud · Buku pengayaan yang berkaitan dengan statistika · Alat peraga · Lingkungan |
3.11Menyelesaikan peluang empiric dan teoritik suatu kejadian dari suatu percobaan. 4.11Menyelesaikan masalah yang berkaitan dengan peluang empiric dan teoritik suatu kejadian dari suatu percobaan. | Peluang · Peluang suatu kejadian · Membandingkan peluang empiric dan peluang teoritik | Mengamati · Mengamati gambar/tayangan peristiwa,, fenomena, konteks atau situasi yang berkaitan dengan peluang empiric, seperti peluang munculnya angka pada pelemparann sebuah koin, peluang munculnyna angka pada kuis, dan peluang pengambilan sebuah kelereng pada sebuah kotak Menanya · Guru dapat memotivasi siswa dengan bertanya: misal bagaiman kemungkinan besok terjadi hujan? Berapa kemungkinan seorang nasabah dating ke bank dalam sebulan? Dsb. · Siswa termotivasi untuk mempertanyakan seputar peluang, misal: bagaimana alasan, ciri atau sifat peristiwa atau kejadian yang bersifat pasti, memiliki peluang tinggi atau rendah, atau tidak berpeluang sama sekali? Mengeksplorasi · Membahas, mendiskusikan, dan mejelaskan berbagai kejadian sehari-hari yang bersifat pasti terjadi, tidak mungkin terjadi, dan mukin terjadi dikaitakn dengan peluang kejadian. · Membahas, mendiskusikan dan menjelaskan berbagai kejadian sehari-hariyang bersifat acak atau random, yaitu kejadian yang hasilnya atau terjadinya tidak dapat dipengaruhi atau dikondisikan dan tidak acak dikaitkan dengan peluang kejadian. · Menjelaskan dan mendeskripsikan probabilitas atau peluang secara sederhana (klasik) melalui percobaan atau eksperimen statistic melempar uang logam atau koin, dadu dan sebagainya, terjadinya muka koin pertama atau kedua, atau terjadinya muka dad uber angka 1, 2, 3, 4, 5, atau 6, dari sejumlah pelemparan serta mencatan hasil kejadiannya kedalam tabel. · Menjelaskan berdasarkan hasil berbagai percobaan dan melalui contoh pengertian ruang sampel sebagai kumpulan semua kejadian mungkin terjadi dari percobaan serta titik sampel yang merupakan kejadian sebagai unsur, elemen atau anggota dari ruang sampel, melalui diagram atau cara lainnya. · Mendalami lebih lanjut, dengan berkelompok melakukan percobaan lainnya misal mengambil bola dengan berbagai warna dan jumlah tertentu dari sebuah kantong kemudian siswa diminta mengambil salah satu bola secara acak, siswa menebak bahwa bola yang kemun gkinan besar terambil adalah bola warna kuning. Kemudian, siswa menanggapi benar atau tidaknya pernyataan tersebut sambal memberikan alasannya secara demokratis. · Menjelaskan dan mendeskripsikan probabilitas atau peluang secara empiric melalui melempar berkali-kali sampai tak terhingga uang logam atau koin, dadu, dsb, kemudian mencatat frekuensi relative terjadinya muka dadu berangka 1, 2, 3, 4, 5, atau 6, serta disajikan kedalam tabel. Mengasosiasi · Mendiskudikan, menganalisis dan menyimpulkan melalui contoh serta mengujinya melalui percobaan tentang konsep peluang secara logis/aksiomatik sebagai rasio atau perbandingan dari jumlah cara terjadinya suatu peristiwa dibagi dengan jumlah cara terjadi semua kejadia. · Mengidentifikasi, menganalisis dan mendeskripsikan konsep peluang sebagai tingkat kemungkinan suatu peristiwa terjadi berdasarkan factor-faktor kualitatif, pengalaman dengan situasi yang serupa atau intuisi tertentu, misal: peluang seorang calon bupati terpilih adalah 60%, dsb. · Mendiskusikan, menganalisis dan menyimpukan arti peluang suatu kejadian bernilai 0, antara 0 dan 1, dan bernilai 1. · Menganalisis dan merumuskan peluang empiric berdasarkan hasil percobaaan. Mengkomunikasikan · Menyajikan secara tertulis dan lisan hasil pembelajaran atau apa yang telah dipelajari pada tingkat kelas atau tingkat kelompok mulai dari apa yang telah dipahami, ketrampilan menentukan peluang, contoh mencari peluang empiric dari suatu percobaan. · Memberikan tanggapan ahasil presentasi meliputi tanya jawab untuk mengonfirmasi, memberi tambahan informasi, melengkapi informasi ataupun tanggapan lainnya. · Melakukan resume secara lengkap, komprehensif dan dibantu guru dari konsep yang dipahami, ketrampilan yang diperoleh maupun sikap lainnya. | Tugas · Tugas tersruktur: mengerjakan Latihan soal-soal berkaitan dengan peluang · Tugas mandiri tidak terstruktur: mencari informasi sejarah peluang dan penggunaanya dalam kehidupan sehari-hari Observasi · Mengamati ketelitian, rasa ingin tahu dalam mengerjakan tugas, menyimak penjelasan atau8 presentasi siswa. Portfolio · Mengumpulkan bahan dan literatur berkaian dengan peluang kemudian disusun, didiskusikan dan di refleksikan. Tes · Mengerjakan lembar kerja berkaitan dengan peluang, menentukan peluang, menentukan peluang empiric · Menilai ketrampilan menyelesaikan permasalahan yang melibatkan peluang. | 15 JP | · Buku teks matematika kelasVIII kemendikbud · Buku pengayaan yang berkaitan dengan peluang · Alat peraga koin, dadu, benda lainnya · Peristiwa sehari-hari · lingkungan |
Tidak ada komentar:
Posting Komentar